Theta hypergeometric series
نویسنده
چکیده
We formulate general principles of building hypergeometric type series from the Jacobi theta functions that generalize the plain and basic hy-pergeometric series. Single and multivariable elliptic hypergeometric series are considered in detail. A characterization theorem for a single variable totally elliptic hypergeometric series is proved.
منابع مشابه
PARTIAL THETA FUNCTIONS AND MOCK MODULAR FORMS AS q-HYPERGEOMETRIC SERIES
Ramanujan studied the analytic properties of many q-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious q-series fit into the theory of automorphic forms. The analytic theory of partial theta functions however, which have q-expansions resembling modular theta functions, is not well understood. Here we con...
متن کاملq-HYPERGEOMETRIC DOUBLE SUMS AS MOCK THETA FUNCTIONS
Recently, Bringmann and Kane established two new Bailey pairs and used them to relate certain q-hypergeometric series to real quadratic fields. We show how these pairs give rise to new mock theta functions in the form of q-hypergeometric double sums. Additionally, we prove an identity between one of these sums and two classical mock theta functions introduced by Gordon and McIntosh.
متن کاملTheta Functions, Elliptic Hypergeometric Series, and Kawanaka’s Macdonald Polynomial Conjecture
We give a new theta-function identity, a special case of which is utilised to prove Kawanaka’s Macdonald polynomial conjecture. The theta-function identity further yields a transformation formula for multivariable elliptic hypergeometric series which appears to be new even in the one-variable, basic case.
متن کاملOn Warnaar’s Elliptic Matrix Inversion and Karlsson–minton-type Elliptic Hypergeometric Series
Using Krattenthaler’s operator method, we give a new proof of Warnaar’s recent elliptic extension of Krattenthaler’s matrix inversion. Further, using a theta function identity closely related to Warnaar’s inversion, we derive summation and transformation formulas for elliptic hypergeometric series of Karlsson–Minton-type. A special case yields a particular summation that was used by Warnaar to ...
متن کاملTheta Hypergeometric Integrals
A general class of (multiple) hypergeometric type integrals associated with the Jacobi theta functions is defined. These integrals are related to theta hypergeometric series via the residue calculus. In the one variable case, theta function extensions of the Meijer function are obtained. A number of multiple generalizations of the elliptic beta integral associated with the root systems An and C...
متن کامل